Statistical Uncertainty Analysis for Small-Sample, High Log-Variance Data: Cautions for Bootstrapping and Bayesian Bootstrapping
نویسندگان
چکیده
منابع مشابه
Bootstrapping statistical parsers from small datasets
We present a practical co-training method for bootstrapping statistical parsers using a small amount of manually parsed training material and a much larger pool of raw sentences. Experimental results show that unlabelled sentences can be used to improve the performance of statistical parsers. In addition, we consider the problem of bootstrapping parsers when the manually parsed training materia...
متن کاملBootstrapping Sample Quantiles of Discrete Data
Sample quantiles are consistent estimators for the true quantile and satisfy central limit theorems (CLTs) if the underlying distribution is continuous. If the distribution is discrete, the situation is much more delicate. In this case, sample quantiles are known to be not even consistent in general for the population quantiles. In a motivating example, we show that Efron’s bootstrap does not c...
متن کاملBootstrapping the log-periodogram regression
Semiparametric estimation of the memory parameter in economic time series raises the problem of the small sample size and the poor approximation of the asymptotic distribution to the finite sample counterpart. This paper considers the bootstrap to improve the finite sample distribution of the popular log peridogram regression and shows that it can significantly reduce the error in the coverage ...
متن کاملBootstrapping the Stein Variance Estimator
This paper applies the bootstrap methods proposed by Efron (1979) to the Stein variance estimator proposed by Stein (1964). It is shown by Monte Carlo experiments that the parametric bootstrap yields the considerable accurate estimates of mean, standard error and confidence limits of the Stein variance estimator.
متن کاملBlock-bootstrapping for noisy data.
BACKGROUND Statistical inference of signals is key to understand fundamental processes in the neurosciences. It is essential to distinguish true from random effects. To this end, statistical concepts of confidence intervals, significance levels and hypothesis tests are employed. Bootstrap-based approaches complement the analytical approaches, replacing the latter whenever these are not possible...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Chemical Theory and Computation
سال: 2019
ISSN: 1549-9618,1549-9626
DOI: 10.1021/acs.jctc.9b00015