Statistical Uncertainty Analysis for Small-Sample, High Log-Variance Data: Cautions for Bootstrapping and Bayesian Bootstrapping

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bootstrapping statistical parsers from small datasets

We present a practical co-training method for bootstrapping statistical parsers using a small amount of manually parsed training material and a much larger pool of raw sentences. Experimental results show that unlabelled sentences can be used to improve the performance of statistical parsers. In addition, we consider the problem of bootstrapping parsers when the manually parsed training materia...

متن کامل

Bootstrapping Sample Quantiles of Discrete Data

Sample quantiles are consistent estimators for the true quantile and satisfy central limit theorems (CLTs) if the underlying distribution is continuous. If the distribution is discrete, the situation is much more delicate. In this case, sample quantiles are known to be not even consistent in general for the population quantiles. In a motivating example, we show that Efron’s bootstrap does not c...

متن کامل

Bootstrapping the log-periodogram regression

Semiparametric estimation of the memory parameter in economic time series raises the problem of the small sample size and the poor approximation of the asymptotic distribution to the finite sample counterpart. This paper considers the bootstrap to improve the finite sample distribution of the popular log peridogram regression and shows that it can significantly reduce the error in the coverage ...

متن کامل

Bootstrapping the Stein Variance Estimator

This paper applies the bootstrap methods proposed by Efron (1979) to the Stein variance estimator proposed by Stein (1964). It is shown by Monte Carlo experiments that the parametric bootstrap yields the considerable accurate estimates of mean, standard error and confidence limits of the Stein variance estimator.

متن کامل

Block-bootstrapping for noisy data.

BACKGROUND Statistical inference of signals is key to understand fundamental processes in the neurosciences. It is essential to distinguish true from random effects. To this end, statistical concepts of confidence intervals, significance levels and hypothesis tests are employed. Bootstrap-based approaches complement the analytical approaches, replacing the latter whenever these are not possible...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Chemical Theory and Computation

سال: 2019

ISSN: 1549-9618,1549-9626

DOI: 10.1021/acs.jctc.9b00015